Deprecated: ¡La función UM::enqueue ha quedado obsoleta desde la versión 2.7.0! Usa UM()->frontend()->enqueue() en su lugar. in /home/elsoluci/public_html/elsolucionario.me/wp-includes/functions.php on line 6078

Notice: Accessing static property um\frontend\Enqueue::$suffix as non static in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 47

Notice: Undefined property: um\frontend\Enqueue::$suffix in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 47

Deprecated: ¡La función UM::enqueue ha quedado obsoleta desde la versión 2.7.0! Usa UM()->frontend()->enqueue() en su lugar. in /home/elsoluci/public_html/elsolucionario.me/wp-includes/functions.php on line 6078

Notice: Accessing static property um\frontend\Enqueue::$suffix as non static in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 51

Notice: Undefined property: um\frontend\Enqueue::$suffix in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 51

Electronic Materials Science – Eugene A. Irene – 1st Edition

Descripción

Una introducción a los principios fundamentales y aplicaciones desde sus inicios en la metalurgia y la cerámica, Electronic Materials Science, abarca tales campos de alta tecnología como la microelectrónica, los polímeros, los biomateriales y la nanotecnología.

Electronic Materials Science presenta los fundamentos de la materia de una manera detallada para un público multidisciplinario. Ofrecer un tratamiento de nivel superior al de un libro de texto de pregrado, este texto beneficia a los estudiantes y profesionales no sólo en la electrónica y la ciencia de los materiales ópticos, sino también en campos de vanguardia adicionales como polímeros y biomateriales.

Los lectores con un conocimiento básico de la química física o de la física, apreciarán la sofisticada presentación del texto de la ciencia de los materiales de hoy. Derivaciones instructivas de fórmulas importantes, generalmente omitidos en un texto introductorio, se incluyen aquí.

Esta característica ofrece una visión útil en las bases de cómo la disciplina comprende temas tales como defectos, equilibrio de fases, y las propiedades mecánicas. Además, los conceptos como el espacio recíproco, la teoría de bandas de energía de electrones, y la termodinámica entran en la discusión anterior y de una manera más sólida que en otros textos.

Electronic Materials Science también cuenta con:

* Una orientación hacia la industria y el mundo académico extraída de la experiencia del autor.
* La información sobre aplicaciones en semiconductores, opto electrónica, foto-células, y nanoelectrónica.
* Los conjuntos de problemas y referencias importantes a lo largo del texto.
* Flexibilidad para las varias necesidades pedagógicas al tratar al sujeto con más profundidad que cualquier otro texto introductorio, Electronic Materials Science prepara a los estudiantes universitarios de pregrado y de alto nivel, para temas avanzados en la disciplina.

Ver más
  • Chapter 1 - Introduction to Electronic Materials Science
    1.1 Introduction
    1.2 Structure and Diffraction
    1.3 Defects
    1.4 Diffusion
    1.5 Phase Equilibria
    1.6 Mechanical Properties
    1.7 Electronic Structure
    1.8 Electronic Properties and Devices
    1.9 Electronic Materials Science

    Chapter 2 - Structure of Solids
    2.1 Introduction
    2.2 Order
    2.3 The Lattice
    2.4 Crystal Structure
    2.5 Notation
    2.5.1 Naming Planes
    2.5.2 Lattice Directions
    2.6 Lattice Geometry
    2.6.1 Planar Spacing Formulas
    2.6.2 Close Packing
    2.7 The Wigner-Seitz Cell
    2.8 Crystal Structures
    2.8.1 Structures for Elements
    2.8.2 Structures for Compounds
    2.8.3 Solid Solutions

    Chapter 3 - Diffraction
    3.1 Introduction
    3.2 The Phase Difference and Bragg's Law
    3.3 The Scattering Problem
    3.3.1 Coherent Scattering From an Electron
    3.3.2 Coherent Scattering From an Atom
    3.3.3 Coherent Scattering From a Unit Cell
    3.3.4 Structure Factor Calculations
    3.4 Reciprocal Space, RESP
    3.4.1 Why Reciprocal Space?
    3.4.2 Definition of RESP
    3.4.3 The Ewald Construction
    3.5 Diffraction Techniques
    3.5.1 Rotating Crystal Method
    3.5.2 Powder Method
    3.5.3 Laue Method
    3.6 Wave Vector Representation

    Chapter 4 - Defects in Solids
    4.1 Introduction
    4.2 Why do defects form?
    4.2.1 A Review of Some Thermodynamics Ideas
    4.2.1.1 The First Law of Thermodynamics
    4.2.1.2 The Second Law of Thermodynamics
    4.2.1.3 The Notion of State
    4.2.1.4 The Boltzmann Relationship
    4.3 Point Defects
    4.4 The Statistics of Point Defects
    4.5 Line Defects - Dislocations
    4.5.1 Edge Dislocations
    4.5.2 Screw Dislocations
    4.5.3 Burgers Vector and The Burgers Circuit
    4.5.4 Dislocation Motion
    4.6 Planar Defects
    4.6.1Grain Boundaries
    4.6.2 Twin Boundaries
    4.7 Three Dimensional Defects

    Chapter 5 - Diffusion in Solids
    5.1 Introduction to Diffusion Equations
    5.2 Atomistic Theory of Diffusion: Fick's Laws and a Theory for D
    5.3 Random Walk Problem
    5.3.1 Random Walk Calculations
    5.3.2 Relation of D to Random Walk
    5.3.3 Self Diffusion Vacancy Mechanism in a FCC Crystal
    5.3.4 Activation Energy for Diffusion
    5.4 Other Mass Transport Mechanisms
    5.4.1 Permeability vs Diffusion
    5.4.2 Convection Versus Diffusion
    5.5 Mathematics of Diffusion
    5.5.1 Steady State Diffusion - Fick's First Law
    5.5.1.1 An Example of Fick's First Law - Steady State Diffusion
    5.5.2 Non Steady State Diffusion - Fick's Second Law
    5.5.2.1 Solutions to Fick's Second Law
    5.5.2.1.1 Thin Film Solution
    5.5.2.1.2 Mathematical Interlude
    5.5.2.1.3 Semi-Infinite Solid Solution
    5.5.2.1.4 Mathematical Interlude
    5.5.2.1.5 Other Solutions for Semi-Infinite Solids
    5.5.2.2 Long Time Solution - Homogenization
    5.5.2.3 The Diffusion Length

    Chapter 6 - Phase Equilibria
    6.1 Introduction
    6.2 The Gibbs Phase Rule
    6.2.1 Definitions
    6.2.2 Equilibrium Among Phases - The Phase Rule
    6.2.3 Applications of the Phase Rule
    6.2.4 Construction of Phase Diagrams: Theory and Experiment
    6.2.4.1 Theory
    6.2.4.2 Experiment
    6.2.5 The Tie Line Principle
    6.2.6 The Lever Rule
    6.2.7 Examples of Phase Equilibria
    6.3 Nucleation and Growth of Phases
    6.3.1 Thermodynamics of Phase Transformations
    6.3.2 Nucleation

    Chapter 7 - Mechanical Properties of Solids - Elasticity
    7.1 Introduction
    7.2 Elasticity Relationships
    7.2.1 True versus Engineering Strain
    7.2.2 The Nature of Elasticity and Young's Modulus
    7.3 An Analysis of Stress by the Equation of Motion
    7.4 Hooke's Law for Pure Dilatation and Pure Shear
    7.5 Poisson's Ratio
    7.6 Relationship among E, ( and ?
    7.7 Relationship among E, G and (
    7.8 Resolving the Normal Forces

    Chapter 8 - Mechanical Properties of Solids - Plasticity
    8.1 Introduction
    8.2 Plasticity Observations
    8.3 The Role of Dislocations
    8.4 The Deformation of Non-Crystalline Materials
    8.4.1 Thermal Behavior of Amorphous Solids
    8.4.2 Time Dependent Deformation of Amorphous Materials
    8.4.3 Models for Network Solids
    8.4.4 Elastomers

    Chapter 9 - Electronic Structure of Solids
    9.1 Introduction
    9.2 Waves, Electrons and the Wave Function
    9.2.1 Representation of Waves
    9.2.2 Matter Waves
    9.2.3 Superposition
    9.2.4 Electron Waves
    9.3 Quantum Mechanics
    9.3.1 Normalization
    9.3.2 Dispersion of Electron Waves and the Schroedinger Equation (SE)
    9.3.3 Classical and QM Wave Equations
    9.3.4 Solutions to the SE
    9.3.4.1 Free Electron Solution to the SE
    9.3.4.2 Strongly and Weakly Bound Electron Solution to the SE
    9. 3.4.3 Periodic Solid Solution to the SE- The Kronig Penney Model
    9.4 Electron Energy Band Representations
    9.4.1 Parallel Band Picture
    9.4.2 k Space Representations
    9.4.3 Brillouin Zones
    9.5 Real Energy Band Structures
    9.6 Other Aspects of Electron Energy Band Structure

    Chapter 10 - Electronic Properties of Materials
    10.1 Introduction
    10.2 Occupation of Electronic States
    10.2.1 Density of States Function, DOS
    10.2.2 The Fermi-Dirac Distribution Function
    10.2.3 Occupancy of Electronic States
    10.3 Position of the Fermi Energy
    10.4 Electronic Properties of Metals: Conduction and Superconduction
    10.4.1 Free Electron Theory for Electrical Conduction
    10.4.2 Quantum Theory of Electronic Conduction
    10.4.3 Superconductivity
    10.5 Semiconductors
    10.5.1 Intrinsic Semiconductors
    10.5.2 Extrinsic Semiconductors
    10.5.3 Semiconductor Measurements
    10.6 Electrical Behavior of Organic Materials

    Chapter 11 - Junctions and Devices and the Nanoscale
    11.1 Introduction
    11.2 Junctions
    11.2.1 Metal-Metal Junctions
    11.2.2 Metal-Semiconductor Junctions
    11.2.3 Semiconductor-Semiconductor PN Junctions
    11.3 Selected Devices
    11.3.1 Passive Devices
    11.3.2 Active Devices
    11.3.2.1 Rectifiers
    11.3.2.2 Photocells
    11.3.2.3 Transistors
    11.3.2.3.1 Bipolar Transistor
    11.3.2.3.2 MOSFET
    11.3.2.3.3 Organic Transistors
    11.4 Nanostructures and Nanodevices
    11.4.1 Heterojunction Nanostructures
  • Citar Libro

Déjanos un comentario

No hay comentarios

guest
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x