Chemical Reactor Analysis and Design – Froment, Bischoff, De Wilde – 3rd Edition

Descripción

Esta es la tercera edición del texto estándar sobre ingeniería de reacciones químicas, que comienza con definiciones básicas y principios fundamentales y continúa hasta las aplicaciones prácticas, enfatizando los aspectos del mundo real de la práctica industrial.

El texto incluye una cobertura actualizada de los métodos de modelado por computadora y muchos ejemplos nuevos trabajados. La mayoría de los ejemplos utilizan datos cinéticos reales de procesos de importancia industrial.

Nuevo en esta edición:
– Los primeros capítulos enseñan a los estudiantes cómo beneficiarse de la aplicación de métodos químicos cuánticos a procesos reales.
– Se introduce y aplica el concepto de evento único al hidrocraqueo de gasóleo al vacío comercial.
– El mecanismo de reacciones se ha explicado con mayor detalle.
– La inserción de cinéticas más realistas en los modelos de estructura del catalizador también ha permitido tener en cuenta el papel de la desactivación del catalizador mediante la formación de coque en importantes procesos comerciales de conversión de hidrocarburos.
– Las desviaciones de lo que antes se llamaba modelos y comportamientos “ideales” se tratan con líneas completamente nuevas, que son posibles gracias al progreso de la CFD (dinámica de fluidos computacional), también disponible mediante software comercial.
– El capítulo sobre reactores de lecho fluidizado y de transporte profundiza más que antes sobre el craqueo catalítico de fracciones de petróleo pesado e informa sobre simulaciones basadas en la dinámica de fluidos computacional.

Ver más
  • Chapter 1: Elements of Reaction Kinetics.
    1.1 Definitions of Chemical Rates.
    1.2 Rate Equations.
    1.3 Coupled Reactions.
    1.4 Reducing the Size of Kinetic Models.
    1.5 Bio-Kinetics.
    1.6 Complex Reactions.
    1.7 Modeling the Rate Coefficient.

    Chapter 2: Kinetics of Heterogeneous Catalytic Reactions.
    2.1 Introduction.
    2.2 Adsorption on Solid Catalysts.
    2.3 Rate Equations.
    2.4 Complex Catalytic Reactions.
    2.5 Experimental Reactors.
    2.6 Model Discrimination and Parameter Estimation.
    2.7 Sequential Design of Experiments.
    2.8 Expert Systems in Kinetics Studies.

    Chapter 3: Transport Processes with Reactions Catalyzed by Solids.
    Part One Interfacial Gradient Effects.
    3.1 Reaction of a component of a fluid at the surface of a solid.
    3.2 Mass and heat transfer resistances.
    3.3 Concentration or partial pressure and temperature differences.
    Part Two Intraparticle Gradient Effects.
    3.4 Molecular-, Knudsen-, and surface diffusion in pores.
    3.5 Diffusion in a catalyst particle.
    3.6 Diffusion and reaction in a catalyst particle. A continuum model.
    3.7 Falsification of rate coefficient and activation energy by diffusion limitations.
    3.8 Influence of diffusion limitations on the selectivities of coupled reactions.
    3.9 Criteria for the importance of intraparticle diffusion limitations.
    3.10 Multiplicity of steady states in catalyst particles.
    3.11 Combination of external and internal diffusion limitations.
    3.12 Diagnostic experimental criteria for the absence of internal and external mass transfer limitations.
    3.13 Nonisothermal particles.

    Chapter 4: Noncatalytic Gas-Solid Reactions.
    4.1 A Qualitative Discussion of Gas-Solid Reactions.
    4.2 General Model with Interfacial and Intraparticle Gradients.
    4.3 Heterogeneous Model with Shrinking Unreacted Core.
    4.4 Models Accounting Explicitly for the Structure of the Solid.
    4.5 On the Use of More Complex Kinetic Equations.

    Chapter 5: Catalyst Deactivation.
    5.1 Types of Catalyst Deactivation.
    5.2 Kinetics of Catalyst Poisoning.
    5.3 Kinetics of Catalyst Deactivation by Coke Formation.

    Chapter 6: Gas-Liquid Reactions.
    6.1 Introduction.
    6.2 Models for Transfer at a Gas-Liquid Interface.
    6.3 Two-Film Theory.
    6.4 Surface Renewal Theory.
    6.5 Experimental Determination of the Kinetics of Gas-Liquid Reactions.

    Chapter 7: The Modeling of Chemical Reactors.
    7.1 Approach.
    7.2 Aspects of Mass-, Heat- and Momentum Balances.
    7.3 The Fundamental Model Equations.

    Chapter 8: The Batch and Semibatch Reactors.
    Introduction.
    8.1 The Isothermal Batch Reactor.
    8.2 The Nonisothermal Batch Reactor.
    8.3 Semibatch Reactor Modeling.
    8.4 Optimal Operation Policies and Control Strategies.

    Chapter 9: The Plug Flow Reactor.
    9.1 The Continuity, Energy, and Momentum Equations.
    9.2 Kinetic Studies Using a Tubular Reactor with Plug Flow.
    9.3 Design and Simulation of Tubular Reactors with Plug Flow.

    Chapter 10: The Perfectly Mixed Flow Reactor.
    10.1 Introduction.
    10.2 Mass and Energy Balances .
    10.3 Design for Optimum Selectivity in Simultaneous Reactions.
    10.4 Stability of Operation and Transient Behavior.

    Chapter 11: Fixed Bed Catalytic Reactors.
    Part One Introduction.
    11.1 The Importance and Scale of Fixed Bed Catalytic Processes.
    11.2 Factors of Progress: Technological Innovations and Increased Fundamental Insight.
    11.3 Factors Involved in the Preliminary Design of Fixed Bed Reactors.
    11.4 Modeling of Fixed Bed Reactors.
    Part Two Pseudohomogeneous Models.
    11.5 The Basic One-Dimensional Model.
    11.6 One-Dimensional Model with Axial Mixing.
    11.7 Two-Dimensional Pseudohomogeneous Models.
    Part Three Heteorgeneous Models.
    11.8 One-Dimensional Model Accounting for Interfacial Gradients.
    11.9 One-Dimensional Model Accounting for Interfacial and Intraparticle Gradients.
    11.10 Two-Dimensional Heterogeneous Models.

    Chapter 12: Complex Flow Patterns.
    12.1 Introduction.
    12.2 Macro- and Micro-Mixing in Reactors.
    12.3 Models Explicitly Accounting for Mixing.
    12.4 Micro- Probability Density Function Methods.
    12.5 Micro-PDF Moment Methods: Computational Fluid Dynamics.
    12.6 Macro-PDF / Residence Time Distribution Methods.
    12.7 Semi-Empirical Models for Reactors with Complex Flow Patterns.

    Chapter 13: Fluidized Bed and Transport Reactors.
    13.1 Introduction.
    13.2 Technological Aspects of Fluidized Bed and Riser Reactors.
    13.3 Some Features of the Fluidization and Transport of Solids.
    13.4 Heat Transfert in Fluidized Beds.
    13.5 Modeling of Fluidized Bed Reactors.
    13.6 Modeling of a Transport of Riser Reactor.
    13.7 Fluidized Bed Reactor Models Considering Detailed Flow Patterns.
    13.8 Catalytic Cracking of Vacuum Gas Oil.

    Chapter 14:Multiphase Flow Reactors.
    14.1 Types of Multiphase Flow Reactors.
    14.2 Design Models for Multiphase Flow Reactors.
    14.3 Specific Design Aspects.
  • Citar Libro

Déjanos un comentario

No hay comentarios

guest
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x