Deprecated: ¡La función UM::enqueue ha quedado obsoleta desde la versión 2.7.0! Usa UM()->frontend()->enqueue() en su lugar. in /home/elsoluci/public_html/elsolucionario.me/wp-includes/functions.php on line 6078

Notice: Accessing static property um\frontend\Enqueue::$suffix as non static in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 47

Notice: Undefined property: um\frontend\Enqueue::$suffix in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 47

Deprecated: ¡La función UM::enqueue ha quedado obsoleta desde la versión 2.7.0! Usa UM()->frontend()->enqueue() en su lugar. in /home/elsoluci/public_html/elsolucionario.me/wp-includes/functions.php on line 6078

Notice: Accessing static property um\frontend\Enqueue::$suffix as non static in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 51

Notice: Undefined property: um\frontend\Enqueue::$suffix in /home/elsoluci/public_html/elsolucionario.me/wp-content/plugins/um-user-bookmarks/includes/core/class-bookmark-common.php on line 51

Analytical Chemistry – Gary D. Christian – 7th Edition

Descripción

Esta edición tiene dos nuevos coautores, Purnendu (Sandy) Dasgupta y Kevin Schug, ambos de la Universidad de Texas en Arlington. De modo que la autoría abarca ahora tres generaciones de químicos analíticos que han aportado su considerable experiencia tanto en la enseñanza como en la investigación a este libro. Si bien todos los capítulos han sido revisados ​​y actualizados por todos los autores, los tres autores han encabezado diferentes tareas.

Esta séptima edición está ampliamente reescrita, ofreciendo material nuevo y actualizado. El objetivo es proporcionar al alumno una base del proceso analítico, las herramientas y los métodos y recursos computacionales, y para ilustrar los problemas que aportan realismo a la práctica y la importancia de la química analítica.

La nueva edición se enfoca en una cobertura más profunda de los principios y técnicas del análisis cuantitativo y el análisis instrumental (también conocido como Química Analítica). El objetivo del texto es proporcionar una base para el proceso analítico, las herramientas y los métodos y recursos computacionales, y para ilustrar los problemas que aportan realismo a la práctica y la importancia de la química analítica. Está diseñado para estudiantes universitarios de pregrado que se especializan en química y en campos relacionados con la química.

Ver más
  • Chapter 1 Analytical Objectives, or: What Analytical Chemists Do 1
    1.1 What Is Analytical Science?, 2
    1.2 Qualitative and Quantitative Analysis: What Does Each Tell Us?, 3
    1.3 Getting Started: The Analytical Process, 6
    1.4 Validation of a Method—You Have to Prove It Works!, 15
    1.5 Analyze Versus Determine—They Are Different, 16
    1.6 Some Useful Websites, 16

    Chapter 2 Basic Tools and Operations of Analytical Chemistry 20
    2.1 The Laboratory Notebook—Your Critical Record, 20
    2.2 Laboratory Materials and Reagents, 23
    2.3 The Analytical Balance—The Indispensible Tool, 23
    2.4 Volumetric Glassware—Also Indispensible, 30
    2.5 Preparation of Standard Base Solutions, 42
    2.6 Preparation of Standard Acid Solutions, 42
    2.7 Other Apparatus—Handling and Treating Samples, 43
    2.8 Igniting Precipitates—Gravimetric Analysis, 48
    2.9 Obtaining the Sample—Is It Solid, Liquid, or Gas?, 49
    2.10 Operations of Drying and Preparing a Solution of the Analyte, 51
    2.11 Laboratory Safety, 57

    Chapter 3 Statistics and Data Handling in Analytical Chemistry 62
    3.1 Accuracy and Precision: There Is a Difference, 62
    3.2 Determinate Errors—They Are Systematic, 63
    3.3 Indeterminate Errors—They Are Random, 64
    3.4 Significant Figures: How Many Numbers Do You Need?, 65
    3.5 Rounding Off, 71
    3.6 Ways of Expressing Accuracy, 71
    3.7 Standard Deviation—The Most Important Statistic, 72
    3.8 Propagation of Errors—Not Just Additive, 75
    3.9 Significant Figures and Propagation of Error, 81
    3.10 Control Charts, 83
    3.11 The Confidence Limit—How Sure Are You?, 84
    3.12 Tests of Significance—Is There a Difference?, 86
    3.13 Rejection of a Result: The Q Test, 95
    3.14 Statistics for Small Data Sets, 98
    3.15 Linear Least Squares—How to Plot the Right Straight Line, 99
    3.16 Correlation Coefficient and Coefficient of Determination, 104
    3.17 Detection Limits—There Is No Such Thing as Zero, 105
    3.18 Statistics of Sampling—How Many Samples, How Large?, 107
    3.19 Powering a Study: Power Analysis, 110
    3.20 Use of Spreadsheets in Analytical Chemistry, 112
    3.21 Using Spreadsheets for Plotting Calibration Curves, 117
    3.22 Slope, Intercept, and Coefficient of Determination, 118
    3.23 LINEST for Additional Statistics, 119
    3.24 Statistics Software Packages, 120

    Chapter 4 Good Laboratory Practice: Quality Assurance and Method Validation 132
    4.1 What Is Good Laboratory Practice?, 133
    4.2 Validation of Analytical Methods, 134
    4.3 Quality Assurance—Does the Method Still Work?, 143
    4.4 Laboratory Accreditation, 144
    4.5 Electronic Records and Electronic Signatures: 21 CFR, Part 11, 145
    4.6 Some Official Organizations, 146

    Chapter 5 Stoichiometric Calculations: The Workhorse of the Analyst 149
    5.1 Review of the Fundamentals, 149
    5.2 How Do We Express Concentrations of Solutions?, 152
    5.3 Expressions of Analytical Results—So Many Ways, 159
    5.4 Volumetric Analysis: How Do We Make Stoichiometric Calculations?, 166
    5.5 Volumetric Calculations—Let’s Use Molarity, 169
    5.6 Titer—How to Make Rapid Routine Calculations, 179
    5.7 Weight Relationships—You Need These for Gravimetric Calculations, 180

    Chapter 6 General Concepts of Chemical Equilibrium 188
    6.1 Chemical Reactions: The Rate Concept, 188
    6.2 Types of Equilibria, 190
    6.3 Gibbs Free Energy and the Equilibrium Constant, 191
    6.4 Le Châtelier’s Principle, 192
    6.5 Temperature Effects on Equilibrium Constants, 192
    6.6 Pressure Effects on Equilibria, 192
    6.7 Concentration Effects on Equilibria, 193
    6.8 Catalysts, 193
    6.9 Completeness of Reactions, 193
    6.10 Equilibrium Constants for Dissociating or Combining Species—Weak Electrolytes and Precipitates, 194
    6.11 Calculations Using Equilibrium Constants—Composition at Equilibrium?, 195
    6.12 The Common Ion Effect—Shifting the Equilibrium, 203
    6.13 Systematic Approach to Equilibrium Calculations—How to Solve Any Equilibrium Problem, 204
    6.14 Some Hints for Applying the Systematic Approach for Equilibrium Calculations, 208
    6.15 Heterogeneous Equilibria—Solids Don’t Count, 211
    6.16 Activity and Activity Coefficients—Concentration Is Not the Whole Story, 211
    6.17 The Diverse Ion Effect: The Thermodynamic Equilibrium Constant and Activity Coefficients, 217

    Chapter 7 Acid–Base Equilibria 222
    7.1 The Early History of Acid—Base Concepts, 222
    7.2 Acid–Base Theories—Not All Are Created Equal, 223
    7.3 Acid–Base Equilibria in Water, 225
    7.4 The pH Scale, 227
    7.5 pH at Elevated Temperatures: Blood pH, 231
    7.6 Weak Acids and Bases—What Is the pH?, 232
    7.7 Salts of Weak Acids and Bases—They Aren’t Neutral, 234
    7.8 Buffers—Keeping the pH Constant (or Nearly So), 238
    7.9 Polyprotic Acids and Their Salts, 245
    7.10 Ladder Diagrams, 247
    7.11 Fractions of Dissociating Species at a Given pH: α Values—How Much of Each Species?, 248
    7.12 Salts of Polyprotic Acids—Acid, Base, or Both?, 255
    7.13 Physiological Buffers—They Keep You Alive, 261
    7.14 Buffers for Biological and Clinical Measurements, 263
    7.15 Diverse Ion Effect on Acids and Bases: cKa and cKb—Salts Change the pH, 266
    7.16 log C—pH Diagrams, 266
    7.17 Exact pH Calculators, 269

    Chapter 8 Acid–Base Titrations 281
    8.1 Strong Acid versus Strong Base—The Easy Titrations, 282
    8.2 The Charge Balance Method—An Excel Exercise for the Titration of a Strong Acid and a Strong Base, 285
    8.3 Detection of the End Point: Indicators, 288
    8.4 Standard Acid and Base Solutions, 290
    8.5 Weak Acid versus Strong Base—A Bit Less Straightforward, 290
    8.6 Weak Base versus Strong Acid, 295
    8.7 Titration of Sodium Carbonate—A Diprotic Base, 296
    8.8 Using a Spreadsheet to Perform the Sodium Carbonate—HCl Titration, 298
    8.9 Titration of Polyprotic Acids, 300
    8.10 Mixtures of Acids or Bases, 302
    8.11 Equivalence Points from Derivatives of a Titration Curve, 304
    8.12 Titration of Amino Acids—They Are Acids and Bases, 309
    8.13 Kjeldahl Analysis: Protein Determination, 310
    8.14 Titrations Without Measuring Volumes, 312

    Chapter 9 Complexometric Reactions and Titrations 322
    9.1 Complexes and Formation Constants—How Stable Are Complexes?, 322
    9.2 Chelates: EDTA—The Ultimate Titrating Agent for Metals, 325
    9.3 Metal–EDTA Titration Curves, 331
    9.4 Detection of the End Point: Indicators—They Are Also Chelating Agents, 334
    9.5 Other Uses of Complexes, 336
    9.6 Cumulative Formation Constants β and Concentrations of Specific Species in Stepwise Formed Complexes, 336

    Chapter 10 Gravimetric Analysis and Precipitation Equilibria 342
    10.1 How to Perform a Successful Gravimetric Analysis, 343
    10.2 Gravimetric Calculations—How Much Analyte Is There?, 349
    10.3 Examples of Gravimetric Analysis, 353
    10.4 Organic Precipitates, 353
    10.5 Precipitation Equilibria: The Solubility Product, 355
    10.6 Diverse Ion Effect on Solubility: Ksp and Activity Coefficients, 361

    Chapter 11 Precipitation Reactions and Titrations 366
    11.1 Effect of Acidity on Solubility of Precipitates: Conditional Solubility Product, 366
    11.2 Mass Balance Approach for Multiple Equilibria, 368
    11.3 Effect of Complexation on Solubility: Conditional Solubility Product, 372
    11.4 Precipitation Titrations, 374

    Chapter 12 Electrochemical Cells and Electrode Potentials 383
    12.1 What Are Redox Reactions?, 384
    12.2 Electrochemical Cells—What Electroanalytical Chemists Use, 384
    12.3 Nernst Equation—Effects of Concentrations on Potentials, 390
    12.4 Formal Potential—Use It for Defined Nonstandard Solution Conditions, 394
    12.5 Limitations of Electrode Potentials, 395

    Chapter 13 Potentiometric Electrodes and Potentiometry 399
    13.1 Metal Electrodes for Measuring the Metal Cation, 400
    13.2 Metal–Metal Salt Electrodes for Measuring the Salt Anion, 401
    13.3 Redox Electrodes—Inert Metals, 402
    13.4 Voltaic Cells without Liquid Junction—For Maximum Accuracy, 404
    13.5 Voltaic Cells with Liquid Junction—The Practical Kind, 405
    13.6 Reference Electrodes: The Saturated Calomel Electrode, 407
    13.7 Measurement of Potential, 409
    13.8 Determination of Concentrations from Potential Measurements, 411
    13.9 Residual Liquid-Junction Potential—It Should Be Minimized, 411
    13.10 Accuracy of Direct Potentiometric Measurements—Voltage Error versus Activity Error, 412
    13.11 Glass pH Electrode—Workhorse of Chemists, 413
    13.12 Standard Buffers—Reference for pH Measurements, 418
    13.13 Accuracy of pH Measurements, 420
    13.14 Using the pH Meter—How Does It Work?, 421
    13.15 pH Measurement of Blood—Temperature Is Important, 422
    13.16 pH Measurements in Nonaqueous Solvents, 423
    13.17 Ion-Selective Electrodes, 424
    13.18 Chemical Analysis on Mars using Ion-Selective Electrodes, 432

    Chapter 14 Redox and Potentiometric Titrations 437
    14.1 First: Balance the Reduction–Oxidation Reaction, 437
    14.2 Calculation of the Equilibrium Constant of a Reaction—Needed to Calculate Equivalence Point Potentials, 438
    14.3 Calculating Redox Titration Curves, 441
    14.4 Visual Detection of the End Point, 445
    14.5 Titrations Involving Iodine: Iodimetry and Iodometry, 447
    14.6 Titrations with Other Oxidizing Agents, 452
    14.7 Titrations with Other Reducing Agents, 454
    14.8 Preparing the Solution—Getting the Analyte in the Right Oxidation State before Titration, 454
    14.9 Potentiometric Titrations (Indirect Potentiometry), 456

    Chapter 15 Voltammetry and Electrochemical Sensors 466
    15.1 Voltammetry, 467
    15.2 Amperometric Electrodes—Measurement of Oxygen, 472
    15.3 Electrochemical Sensors: Chemically Modified Electrodes, 472
    15.4 Ultramicroelectrodes, 474
    15.5 Microfabricated Electrochemical Sensors, 474
    15.6 Micro and Ultramicroelectrode Arrays, 475

    Chapter 16 Spectrochemical Methods 477
    16.1 Interaction of Electromagnetic Radiation with Matter, 478
    16.2 Electronic Spectra and Molecular Structure, 484
    16.3 Infrared Absorption and Molecular Structure, 489
    16.4 Near-Infrared Spectrometry for Nondestructive Testing, 491
    16.5 Spectral Databases—Identifying Unknowns, 493
    16.6 Solvents for Spectrometry, 493
    16.7 Quantitative Calculations, 494
    16.8 Spectrometric Instrumentation, 504
    16.9 Types of Instruments, 519
    16.10 Array Spectrometers—Getting the Entire Spectrum at Once, 522
    16.11 Fourier Transform Infrared Spectrometers, 523
    16.12 Near-IR Instruments, 525
    16.13 Spectrometric Error in Measurements, 526
    16.14 Deviation from Beer’s Law, 527
    16.15 Fluorometry, 530
    16.16 Chemiluminescence, 538
    16.17 Fiber-Optic Sensors, 540

    Chapter 17 Atomic Spectrometric Methods 548
    17.1 Principles: Distribution between Ground and Excited States—Most Atoms Are in the Ground State, 550
    17.2 Flame Emission Spectrometry, 553
    17.3 Atomic Absorption Spectrometry, 556
    17.4 Sample Preparation—Sometimes Minimal, 567
    17.5 Internal Standard and Standard Addition Calibration, 567
    17.6 Atomic Emission Spectrometry: The Induction Coupled Plasma (ICP), 569
    17.7 Atomic Fluorescence Spectrometry, 574

    Chapter 18 Sample Preparation: Solvent and Solid-Phase Extraction 579
    18.1 Distribution Coefficient, 579
    18.2 Distribution Ratio, 580
    18.3 Percent Extracted, 581
    18.4 Solvent Extraction of Metals, 583
    18.5 Accelerated and Microwave-Assisted Extraction, 585
    18.6 Solid-Phase Extraction, 586
    18.7 Microextraction, 590
    18.8 Solid-Phase Nanoextraction (SPNE), 593

    Chapter 19 Chromatography: Principles and Theory 596
    19.1 Countercurrent Extraction: The Predecessor to Modern Liquid Chromatography, 598
    19.2 Principles of Chromatographic Separations, 603
    19.3 Classification of Chromatographic Techniques, 604
    19.4 Theory of Column Efficiency in Chromatography, 607
    19.5 Chromatography Simulation Software, 616

    Chapter 20 Gas Chromatography 619
    20.1 Performing GC Separations, 620
    20.2 Gas Chromatography Columns, 623
    20.3 Gas Chromatography Detectors, 630
    20.4 Temperature Selection, 638
    20.5 Quantitative Measurements, 639
    20.6 Headspace Analysis, 641
    20.7 Thermal Desorption, 641
    20.8 Purging and Trapping, 642
    20.9 Small and Fast, 643
    20.10 Separation of Chiral Compounds, 644
    20.11 Two-Dimensional GC, 645

    Chapter 21 Liquid Chromatography and Electrophoresis 649
    21.1 High-Performance Liquid Chromatography, 651
    21.2 Stationary Phases in HPLC, 654
    21.3 Equipment for HPLC, 665
    21.4 Ion Chromatography, 692
    21.5 HPLC Method Development, 700
    21.6 UHPLC and Fast LC, 701
    21.7 Open Tubular Liquid Chromatography (OTLC), 702
    21.8 Thin-Layer Chromatography, 702
    21.9 Electrophoresis, 708
    21.10 Capillary Electrophoresis, 711
    21.11 Electrophoresis Related Techniques, 724

    Chapter 22 Mass Spectrometry 735
    22.1 Principles of Mass Spectrometry, 735
    22.2 Inlets and Ionization Sources, 740
    22.3 Gas Chromatography–Mass Spectrometry, 741
    22.4 Liquid Chromatography–Mass Spectrometry, 746
    22.5 Laser Desorption/Ionization, 750
    22.6 Secondary Ion Mass Spectrometry, 752
    22.7 Inductively Coupled Plasma–Mass Spectrometry, 753
    22.8 Mass Analyzers and Detectors, 753
    22.9 Hybrid Instruments and Tandem Mass Spectrometry, 764

    Chapter 23 Kinetic Methods of Analysis 769
    23.1 Kinetics—The Basics, 769
    23.2 Catalysis, 771
    23.3 Enzyme Catalysis, 772

    Chapter 24 Automation in Measurements 784
    24.1 Principles of Automation, 784
    24.2 Automated Instruments: Process Control, 785
    24.3 Automatic Instruments, 787
    24.4 Flow Injection Analysis, 789
    24.5 Sequential Injection Analysis, 791
    24.6 Laboratory Information Management Systems, 792
    Clinical Chemistry C1
    25.1 Composition of Blood, C1
    25.2 Collection and Preservation of Samples, C3
    25.3 Clinical Analysis—Common Determinations, C4
    25.4 Immunoassay, C6

    Chapter 26 Environmental Sampling and Analysis EN1
    26.1 Getting a Meaningful Sample, EN1
    26.2 Air Sample Collection and Analysis, EN2
    26.3 Water Sample Collection and Analysis, EN9
    26.4 Soil and Sediment Sampling, EN11
    26.5 Sample Preparation for Trace Organics, EN12
    26.6 Contaminated Land Sites—What Needs to Be Analyzed?, EN12
    26.7 EPA Methods and Performance-Based Analyses, EN13
  • Citar Libro

Déjanos un comentario

No hay comentarios

guest
0 Comentarios
Comentarios en línea
Ver todos los comentarios
0
Nos encantaría conocer tu opinión, comenta.x